Friday, July 13, 2012

New tech for complex micro structures for use in sensors and other apps

ScienceDaily (July 13, 2012) ? University of Maryland Chemistry Professor John Fourkas and his research group have developed new materials and nanofabrication techniques for building miniaturized versions of components needed for medical diagnostics, sensors and other applications. These miniaturized components -- many impossible to make with conventional techniques -- would allow for rapid analysis at lower cost and with small sample volumes.

Fourkas and his team have created materials that allow the simultaneous 3D manipulation of microscopic objects using optical tweezers and a unique point-by-point method for lithography (the process of using light in etching silicon or other substrates to create chips and other electronic components). As they report in a research article published in the August issue of Chemical Science , the combination of these techniques allows them to assemble complex 3D structures from multiple microscopic components.

This work builds on earlier breakthroughs by Fourkas and his team in the use of visible light for making tiny structures for applications such as optical communications, controlling cell behavior and manufacturing integrated circuits.

"These materials have opened the door to a suite of new techniques for micro and nanofabrication," says Fourkas. "For instance, we have been able to perform braiding and weaving with threads that have a diameter that is more than 100 times smaller than that of a human hair." In the paper, Fourkas and his group also showcase 3D structures composed of glass microspheres, a microscopic tetherball pole, and a microscopic needle eye that has been threaded.

"One of the exciting aspects of this set of techniques is that it is compatible with a wide range of materials. For instance, we can weave together threads with completely different compositions to create functional microfabrics or build microscopic devices `brick by brick' with building blocks that have different chemical or physical properties."

In addition to being enabling technologies for the creation of microscopic analytical and diagnostic devices, Fourkas foresees these techniques being valuable in the study and control of the behavior of individual cells and groups of cells.

Simultaneous microscale optical manipulation, fabrication and immobilisation in aqueous media was authored by Farah Dawood, Sijia Qin, Linjie Li, Emily Y. Lin and John T. Fourkas.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:


Story Source:

The above story is reprinted from materials provided by University of Maryland.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Farah Dawood, Sijia Qin, Linjie Li, Emily Y. Lin, John T. Fourkas. Simultaneous microscale optical manipulation, fabrication and immobilisation in aqueous media. Chemical Science, 2012; 3 (8): 2449 DOI: 10.1039/C2SC20351K

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

Source: http://feeds.sciencedaily.com/~r/sciencedaily/~3/46SVTgPwtFM/120713091644.htm

michael robinson joe paterno memorial service taco bell breakfast menu ener1 national chocolate cake day epstein joshua komisarjevsky

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.